- C++ pointers are easy and fun to learn. Some C++ tasks are performed more easily with pointers, and other C++ tasks, such as dynamic memory allocation, cannot be performed without them.
What are Pointers?
- A pointer is a variable whose value is the address of another variable. Like any variable or constant, you must declare a pointer before you can work with it. The general form of a pointer variable declaration is −
type *var-name;
- Here, type is the pointer’s base type; it must be a valid C++ type and var-name is the name of the pointer variable. The asterisk you used to declare a pointer is the same asterisk that you use for multiplication. However, in this statement the asterisk is being used to designate a variable as a pointer. Following are the valid pointer declaration-
int *ip; // pointer to an integer double *dp; // pointer to a double float *fp; // pointer to a float char *ch // pointer to character
- The actual data type of the value of all pointers, whether integer, float, character, or otherwise, is the same, a long hexadecimal number that represents a memory address. The only difference between pointers of different data types is the data type of the variable or constant that the pointer points to.
Pointers in C++
Pointers have many but easy concepts and they are very important to C++ programming. There are following few important pointer concepts which should be clear to a C++ programmer −
| Sr.No | Concept & Description |
|---|---|
| 1 | Null Pointers C++ supports null pointer, which is a constant with a value of zero defined in several standard libraries. |
| 2 | Pointer Arithmetic There are four arithmetic operators that can be used on pointers: ++, –, +, – |
| 3 | Pointers vs Arrays There is a close relationship between pointers and arrays. |
| 4 | Array of Pointers You can define arrays to hold a number of pointers. |
| 5 | Pointer to Pointer C++ allows you to have pointer on a pointer and so on. |
| 6 | Passing Pointers to Functions Passing an argument by reference or by address both enable the passed argument to be changed in the calling function by the called function. |
| 7 | Return Pointer from Functions C++ allows a function to return a pointer to local variable, static variable and dynamically allocated memory as well. |
Using Pointers in C++
There are few important operations, which we will do with the pointers very frequently. (a) We define a pointer variable. (b) Assign the address of a variable to a pointer. (c) Finally access the value at the address available in the pointer variable. This is done by using unary operator * that returns the value of the variable located at the address specified by its operand. Following example makes use of these operations −
Example
#include <iostream>
using namespace std;
int main () {
int var = 20; // actual variable declaration.
int *ip; // pointer variable
ip = &var; // store address of var in pointer variable
cout << "Value of var variable: ";
cout << var << endl;
// print the address stored in ip pointer variable
cout << "Address stored in ip variable: ";
cout << ip << endl;
// access the value at the address available in pointer
cout << "Value of *ip variable: ";
cout << *ip << endl;
return 0;
}
When the above code is compiled and executed, it produces result something as follows −
Value of var variable: 20 Address stored in ip variable: 0xbfc601ac Value of *ip variable: 20
